
MEAM620 Project 1.4: Planning and Control, From Simulation to Reality

Team 01: Andrew Garrett, Yuntao Hu, Yunpeng Wang, Alexander Koldy

I. INTRODUCTION AND SYSTEM OVERVIEW

In Project 1.4, the objective is to deploy, test, and tune
algorithms for planning and control onto a physical quadrotor
platform. These algorithms are first developed in a simulation
environment to tune their performance on a wide variety of
environments. However, this lab seeks to expose the “sim-to-
real” gap which is highly relevant to implementing safe and
robust robotic systems in the real world.

Session Structure: The lab is divided into two working
sessions, where the second session builds on progress made in
the first session. Upon completing both sessions, the physical
quadrotor has a tuned controller for attitude and position, a
waypoint generator for optimal paths from a start position
to a goal position, and a trajectory generator for dynamically
feasible motion planning between waypoints. The first session
focuses on tuning the controller for hovering, stepped control
targets, and constant-velocity waypoint navigation. The sec-
ond session focuses on tuning the waypoint and trajectory
generators for more complex settings.

Lab Setting and Hardware: The lab setting is a controlled
indoor environment to minimize extraneous factors that might
affect accurate evaluation of algorithm performance. A VI-
CON system of cameras is used to track the pose of the
quadrotor with both high-fidelity and high-frequency. The
quadrotor has retro-reflective markers arranged asymmetri-
cally to ensure that the orientation of the tracked model is
correct. The VICON system communicates with a dedicated
host, which performs frame synchronization and extracts
motion capture data from each camera, which is then fused
for a high accuracy estimate of the true pose of the quadrotor
with low latency and high accuracy. The quadrotor platform
is a Crazyflie 2.1, which is a relatively cheap, small robot
commonly used in education and research settings. Onboard
the Crazyflie is an IMU (accelerometer and gyroscope),
a radio transceiver for communication with a host, and a
microcontroller with ESCs for relaying commands to the four
brushless DC motors.

Communication with the Drone: A host computer performs
all of the algorithmic computation and communicates with
the quadrotor to send outputted control signals. As discussed
in more detail in section II, the controller running on the
host sends a vector of four motor-speed commands (radians
per second) to the quadrotor via radio. The motor commands
are each real-valued, positive floats which are clipped onto
the domain [vmin, vmax], which are parameters specified by
the motor manufacturer. The quadrotor also has capability
to relay IMU data back to the host, however this is not
leveraged because the VICON system is more than sufficient
for tracking the quadrotor pose.

II. CONTROL

To control the robot’s motion three-dimensional space, a
nonlinear geometric controller is designed, with feedback
coming in the form of position (r), velocity (ṙ), orientation(
WRB

)
and angular velocity (ω). The desired force necessary

to command the robot’s movement in R3, Fdes, is given by
the expression

Fdes = mr̈des +

00
g

 . (1)

The desired acceleration of the quadrotor is found via a
proportional-derivative (PD) controller,

r̈des = r̈T +Kp(rT − r) +Kd(ṙT − ṙ), (2)

where the subscript T represents the variables associated
with a generated trajectory, and the gains are given by

Kp =

5 0 0
0 5 0
0 0 10

 and Kd =

4.5 0 0
0 4.5 0
0 0 5

 ,
with units of s−2 and s−1, respectively. The acceleration

from the trajectory acts as a feedforward term, where cor-
rections are made via the proportional controllers on position
and velocity. Using equations (1) and (2), the thrust input u1
to the quadrotor is calculated via

u1 = bT
3 Fdes, (3)

where b3 = WRB

[
0 0 1

]T
is the quadrotor’s body

z-axis expressed in the inertial frame. The input u1 only
provides the input necessary to keep the robot in the air,
therefore a second input u2 is used to change the robot’s
attitude. To calculate this input, a desired rotation based on a
desired trajectory and input thrust is established. The input
moments (u2) drive the robot’s current orientation to this
desired orientation given by the expression(

WRB

)
des

=
[
b1des b2des b1des

]
(4)

Since thrust always aligns with the body z-axis of the
quadrotor, b3des is defined as the normalized desired force
vector:

b3des =
Fdes

||Fdes||
(5)

The body y-axis should be perpendicular to both the body
x-axis and a vector which defines the yaw direction in the
plane made up by the world x and y axes. The following

yields an expression for the body y-axis, which ensures that
the plane formed by the body z-axis and body x-axis contains
the the vector defining yaw direction:

b2des =
b3des ×

[
cos(ψT) sin(ψT) 0

]T
||b3des ×

[
cos(ψT) sin(ψT) 0

]T ||
, (6)

where ψT is the yaw given by a generated trajectory. The
body x-axis is computed by taking the cross product between
the body y-axis and body z-axis, i.e.,

b1des = b2des × b3des . (7)

Equations (7), (6) and (5) are plugged into equation 4 to
generate the desired attitude for the quadrotor. For the sake of
simplicity, the superscripts and subscripts are dropped from
both WRB and

(
WRB

)
des

. The orientation error is given by

eR =
1

2

(
RT

desR−RTRdes
)∨
, (8)

where ∨ is used to vectorize a skew-symmetric matrix.
Moreover, the error in angular velocity eω = ω − ωdes is
computed with the desired angular velocity being set to zero
(though a trajectory-based desired angular velocity can be
computed by exploiting differential flatness).

The second input set is now generated as follows:

u2 = −I(KReR +Kωeω), (9)

where I is the inertia tensor of the robot and the gains are
given by

KR =

875 0 0
0 875 0
0 0 875

 and Kω =

91 0 0
0 91 0
0 0 91

 ,
with units of s−2 and s−1, respectively.
The gain matrix Kp provides a proportional constant on

the position error of the robot in R3, which produces large
accelerations with high error and less acceleration with low
error. The gain matrix Kd provides a proportional constant on
the velocity error of the robot R3, which produces a damping
effect on the system’s acceleration. This helps to minimize
the overshoot the quadrotor experiences when following tra-
jectories or flying towards a point.

The attitude controller does not actually get used directly,
as the Crazyflie features an on-board attitude controller to
control q (quaternion representation of R) to qdes (quaternion
representation of Rdes).

For real experiments, the maximum velocity of the robot
is limited to 1m

s ; moreover, gains (shown previously) are
reduced to approximately 70% of their original value. After
this, gains are re-tuned based off the response of the physical
system. The simulation likely does not account for highly-
nonlinear aerodynamics or measurement error, so lowering
speed and gains allows the quadrotor to follow a more stable
flight.

According to Figure 1 the controlled system has an ap-
proximate rise time of 2.4s, approximately a 28% overshoot

(with respect to the steady-state), a settling time of about 4s,
an approximate steady-state error of 0.1m, and a damping
ratio of about 0.4. The controller performs well with a quick
rise time and settling, time but can certainly be better tuned
by increasing the damping gain Kd. The performance of the
controller can be further improved with an integral term on
the quadrotor’s position to eliminate the steady-state error.

Fig. 1: Step response in z

For the second portion of the lab, separate gains were used
for more complex trajectory following. These gains are as
follows:

Kp =

13 0 0
0 13 0
0 0 13.5

 , Kd =

5 0 0
0 5 0
0 0 5.2

 ,

KR =

350 0 0
0 350 0
0 0 100

 and Kω =

27 0 0
0 27 0
0 0 21

 .
III. MOTION PLANNING

The quadrotor’s motion planning uses the A* Search algo-
rithm for generating an optimal path from a start position to
a goal position, linear downsampling for path pruning, and
a constant-speed trajectory generator for tracking between
waypoints on the pruned path.

World Model: For a known 3D map, a 3D occupancy grid
M ∈ {0, 1}n×m×o can be parameterized by voxel resolution
r ∈ R and margin p ∈ R to inflate obstacles and boundaries.
M can be represented with a graph G(V,E), where V is the
set of unoccupied voxel positions and E is the set of allowed
transitions between u, v ∈ V . ∀u, v ∈ V , ∃e(u, v) ∈ E if
u ̸= v and ||u−v|| ≤

√
3r, meaning that u may have at most

26 edges to neighboring v.
Path Planning: A* Search is a hallmark graph algorithm in

robotics which builds upon Dijkstra’s Algorithm by expanding
nodes prioritized by the sum of their ”cost-to-come” (g(v) :
V → R) and an estimated ”cost-to-go” (h(v) : V → R),
f(v) = g(v) + h(v). A* Search takes as input a graph
G(V,E), a source node vs ∈ V , and a sink node vg ∈ V .
The ”cost-to-come” term g(v) defines the cost of following
the optimal sub-path from vs to v ∈ V . The ”cost-to-go”

term, also known as a heuristic h(v), is an estimate of the
cost to follow the optimal path from v ∈ V to vg . A* Search
is optimal and complete when h(v) is both admissible and
consistent. h(v) is admissible if ∀v ∈ V , h(v) ≤ c∗(v, vg),
where c∗(v) is the true cost of the optimal path from v to vg .
h(v) is consistent if ∀u, v ∈ V such that e(u, v) ∈ E, h(u) ≤
c(u, v)+h(v). For this lab, h is chosen as the Euclidean (L2)
distance, however other candidates include the Manhattan
(L1) distance and Diagonal or Chebyshev (L∞) distance. As
such, A* Search will return a path p∗ = (vs, ..., vg) which
minimizes the euclidean distance traversing e ∈ E from vs
to vg .

Path Pruning: Path pruning serves to reduce the number
of nodes in the path p∗ planned by A* Search, which can
offer immediate benefits in reduced time and space com-
plexity for trajectory generation and tracking. In trajectory
generation, dense waypoints can not only lead to inefficient
runtime and storage, but may also result in failure to converge
to a smooth trajectory for methods such as minimum-jerk
and minimum-snap. Furthermore, high-frequency and high-
magnitude changes in desired state can lead to jerky and/or
inaccurate tracking.

We tried the Ramer-Douglas-Peucker algorithm, but be-
cause of its characteristic of retaining so few path points
that it loses its own curve properties, we ended up using the
mean point pruning method. Linear downsampling p∗ by an
integer factor k > 0, means that pruned path w∗ has |p∗|/k
waypoints. First, create ⌊|p∗|/k⌋-partitions of p∗, each of size
k. Elements of w∗ are simply the mean of each of these
partitions, and the goal position is appended to the end. As
such, |w∗| = ⌊|p∗|/k⌋+1. This greatly reduces the number of
waypoints used for trajectory generation, while preserving the
general shape of the path. For the experiments in section IV,
k = 5.

Trajectory Generation: Trajectory planning aims to convert
our points into the desired control states for the system.
Although we tested our quadrotor using the mini-snap and
mini-jerk methods, the results were not very satisfactory. In
this lab, we applied the ”constant speed trajectory” method
with some adjustments and improvements. State outputs will
be:

ṙT,i = vl̄i

rT,i = Pi

r̈T,i = 0;
...
r T,i = 0;

....
r T,i = 0

ψT,i = 0; ψ̇T,i = 0

where i means the corresponding time segment for current
time, Pi means the current control point, v is constant speed
we set, which v = 1m/s, vl̄i = Pi+1−Pi

||Pi+1−Pi|| . For position
output, we controlled the quadrotor to follow the starting
point of the current time segment during that segment instead
of propagating a dynamic movement from that point. This
allows the quadrotor to maintain a certain level of stability
(its controller may be linearly increasing) without the need
for frequent fine-tuning of the quadrotor input at all positions.
Other outputs, such as acceleration, were set to 0.

IV. MAZE FLIGHT EXPERIMENTS

The position and velocity vs time of three different mazes
are shown in Fig. 2, Fig. 4, and Fig. 6. And the inertial
obstacles, waypoints, planned trajectory, and actual flight path
of three different mazes are shown in Fig. 3, Fig. 5, and Fig.
7.

The tracking errors on positions in three mazes are mostly
less than 0.1 meters and less than 0.2 meters in sharp turns
case. The errors are acceptable because the quadrotor still has
a margin of 0.25 meters. At the same time, the velocity errors
flutter obviously due to the jittery actual velocity. It may be
partially due to the constant velocity trajectory generator we
use. In both the position and velocity cases, the error increases
obviously when suddenly changing the forward direction, i.e.
the sharp turns used to bypass the obstacles.

Our trajectory could be more aggressive. If we make the
resolution of our map extremely small, we will be able to
find nearly optimal path and trajectory, but this will lead to
explosive computing complexity which may not be acceptable
with the limited resource on the quadrotor. In addition, if
we do not use the Ramer-Douglas-Peucker algorithm, we can
obtain finer grain trajectory, but this also leads to a higher
computing complexity because of the extremely large matrix
we are going to solve in the trajectory planner.

If we use the PID controller, the performance of the
trajectory following will be way better. In this case, the
quadrotor can fly at a higher speed and is more robust to sharp
turns. At the same time, the threshold of the Ramer-Douglas-
Peucker algorithm also has a huge impact on the number of
waypoints the quadrotor follows. And the more waypoints
the quadrotor follows, the fewer sharp turns the quadrotor
are going to face. In addition, a quadratic or cubic spline
generator that is used to fill the gaps between the waypoints
also can mitigate the overshooting problem when facing sharp
turns. However, it’s also a tradeoff between performance and
computing complexity.

If we have more sessions, we will test everyone’s code.
When we were doing the in-person labs, the device problem
takes up too much time. And the numpy version on Andrew’s
and Yunpeng’s machines is different from the one on the
controlling computer in the labs. So although we have a
min-jerk and min-snap trajectory generator with theoretically
better performance, we don’t have enough time to verify our
code on the quadrotor.

Fig. 2: Position and velocity vs time of maze 1

Fig. 3: Obstacles, waypoints, and planned trajectory of Maze
1

Fig. 4: Position and velocity vs time of maze 2

Fig. 5: Obstacles, waypoints, and planned trajectory of Maze
2

Fig. 6: Position and velocity vs time of maze 3

Fig. 7: Obstacles, waypoints, and planned trajectory of Maze
3

	Introduction and System Overview
	Control
	Motion Planning
	Maze Flight Experiments

